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Abstract— We propose a scheduling method for the discrete
lot-sizing problem (DLSP) of multiple products on a single
machine. To obtain an exact solution to the DLSP, the time
period should be set sufficiently small despite the exponential
increase in computational time. We propose a framework for
solving the DLSP using reinforcement learning. We formalize
the scheduling process as a sequential decision-making problem
with the Markov decision process. In solving the formalized
problem, we propose the structure of a deep neural network
for reinforcement learning. We select proper methodology
reinforcement learning via numerical experiments. Additionally,
we adopt an ensemble to guarantee stability and a limited-
lookahead method to get an accurate solution. Numerical
experiments show that the proposed method performs well
compared with a previously reported mixed integer program
model.

I. INTRODUCTION

As customer demands become increasingly diverse, the
setup of machines in factories needs to be changed more
frequently and the volume per setup becomes increasingly
small. A change in setup usually involves a changeover cost
and/or time associated with changes in tools, the reposi-
tioning of materials, and trial runs. Furthermore, if planners
reduce the number of setup changes to improve productivity,
backorder and inventory holding costs increase. In this con-
text, the dynamic lot-sizing and scheduling problem concerns
the production planning of multiple products over multiple
periods to meet the scheduled demand using a machine of
limited capacity. With production planning, multiple prod-
ucts can be produced, and a deterministic, discrete demand
volume is given for each product.

Depending on the characteristic of the planning process,
the dynamic lot-sizing problem can be classified into several
models. The main difference between models is bucket
size. The Capacitated-Lot Sizing Problem(CLSP) is a typical
example of big-bucket model where the length a period is
long enough[1]. The CLSP considers only the quantities and
timings of the production. The CLSP ignores the sequence of
the products within a period despite of consideration of setup
carryover. The basic formulation of the Discrete Lot-Sizing
Problem(DLSP) is small-bucket model for the dynamic lot-
sizing problem. The DLSP allows at most one product per
period, and production must be for the full period or not at
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all[2]. Based on the all-or-nothing assumption, the sequence
of products can be described in the DLSP.

Numerous studies have investigated the dynamic lot-sizing
problem adopting various approaches. Buschkühl et al. [3]
and Copil et al. [4] reviewed models and algorithms used for
the dynamic lot-sizing problem. Mathematical-programming-
based approaches have also been proposed to solve the
CLSP ([1];[5];[2]), in which an exact solution is generated;
however, that a high-quality solution can be achieved within
a limited time is not guaranteed. To overcome this limitation,
a meta-heuristic method has been suggested, whereby a
high-quality schedule is generated within a specific time
limit ([6]; [7]). In the real-world, schedules are revised
frequently, and they need to be generated instantaneously
following environment changes (e.g., failure of a machine
or exhaustion of materials). Meta-heuristic algorithms can
quickly find a proper solution, but their computational time is
not at a level suitable for real-world application. In particular,
finding a good solution takes much time when approaching
the optimal schedule. To manage this computational-time-
related problem, intuitive heuristic algorithms have been
used ([8];[5])). However, although these algorithms have
real-world practicality, they do not guarantee a high-quality
schedule that considers backorders and capacity constraints.
Recently, machine learning approaches have been explored
to obtain a near-optimal schedule within a limited computa-
tional time in job-shop scheduling ([9]; [10]). However, we
are unaware of any study that has applied machine learning
to the dynamic lot-sizing problem. A supervised learning
approach may not be applicable if obtaining high-quality
schedules for training a model is difficult. In reinforcement
learning (RL), an agent learns a policy that defines how
the agent selects the next action from a specific state at
each decision epoch. RL approaches can generate schedules
superior to those generated using existing approaches.

We consider the DLSP model because we focus on making
a schedule of a machine, which means the model not
only solves lot-sizing but also describes the sequence of
production in a small-bucket environment. Building upon
the foregoing literature review, we propose a scheduling
method for the DLSP using an RL approach based on a
deep Q-network (DQN). We address the DLSP for a single
machine with a sequence-independent setup cost. We are
motivated by the following industry requirement. Products
can be classified into several groups. If setup changes arise
within the same group, they take a constant and short period
of time. In contrast, setup changes across different groups
take different and long period of times. Managers allocate
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products to each machine so that the products of each group
do not mix with those of other groups. After such allocation,
the planner determines which product to produce and how
much of the product to produce in each time period. We
focus on the latter process.

The remainder of this paper is organized as follows. Sec-
tion II defines assumptions and formalizes the DLSP using
the Markov decision process (MDP). Section III discusses
the algorithm, and Section IV discusses the experiments and
algorithm performance. Section V presents the conclusions
and discusses the limitations of the study.

II. PROBLEM FORMULATION

A. Problem Assumptions

The model is based on the following assumptions.
• The scheduled demand can exceed the capacity. The

demand is the estimated production of the downstream
machines. Line balancing cannot always be achieved.
And setup time and cost makes it difficult to estimate
the exact capacity in the phase of demand allocation.
This demand—capacity imbalance appears frequently in
the scheduling of a bottleneck machine. Backorders can
thus be incurred despite sufficient inventory.

• Backorders are not covered later if the demand is not
fulfilled within a predefined time period. The down-
stream machine does not consider backorders of the past
period.

• No setup cost is incurred if the setup is maintained from
one period to the next;No ordering cost is incurred if
the setup is carried over. The decision of whether to
carry over a setup is thus crucial.

• The setup cost is constant and is independent of the
sequence.

• Machine failures do not occur.
• There is no idle operation.

B. Mixed Integer Programming Model

A previous study proposed a mixed-integer programming
(MIP) model. We apply setup carryover constraints of [1] in
the MIP model of the DLSP. We compare the performance
of the MIP model with that of our RL model.

The DLSP model formulation :

Min

N∑
j=1

T∑
t=1

sc · yjt +
N∑
j=1

T∑
t=1

bo · I−jt +
N∑
j=1

T∑
t=1

h · I+jt (1)

yjt ·P s
j +wjt ·P c

j + I+jt−1− I+jt +−I
−
jt = djt

∀j, t (2)

N∑
j=1

wjt +

N∑
j=1

yjt = 1 ∀t (3)

wjt ≤ yjt−1 + wjt−1
∀j, t = 2, ..., T (4)

wjt + wjt+1 ≤ 1 + vt
∀j, t = 1, ..., T − 1 (5)

yjt + vt ≤ 1 ∀j, t (6)

yjt ∈ {0, 1} ∀j, t (7)

wjt ∈ {0, 1} ∀j, t (8)

vt ≥ 0 ∀t (9)

Indices and index set :
j = Products or items, j = 1, ..., N
t = Periods, t = 1, ..., T

Data :
sc = setup cost
bo = backorder cost
h = inventory holding cost
P s
j = Production quantity for item j at full capacity for

each period when the setup changes arise
P c
j = Production quantity for item j at full capacity for

each period when the setup carryover arise
djt = gross demand for item j in period t

V ariables :
I+jt = Inventory of item j at the end of period t

I−jt = Backorders of item j at the end of period t
yjt = Binary setup change variable(=1, if the setup for item
j is changed in period t, 0 otherwise)
wjt = Binary setup carryover variable(=1, if the setup for
item j is carried over from period t − 1 to period t, 0
otherwise)
vt = Dummy variable for setup carryover constraint

The objective function (1) minimizes the total sum of
setup, backorder and inventory holding cost. Constraint (2)
is the balance constraint, constraint (3) ensure that either
setup change or setup carryover must be selected. Constraint
(4)-(6) are setup carryover constraints proposed by [1].
Constraint (4) ensure that a setup can only be carried over
into period t if either a setup change arised in period t− 1
or a setup is carried over from period t− 2 to period t− 1.
A setup can only be carried over two consecutive bucket
boundaries, if vt = 1 in (5). And consecutive setup carryover
is only possible if there is no setup change in period t by
(6).

C. Markov Decision Process Model

The DLSP can be formalized using an MDP. The prob-
lem can be formalized with an MDP. It involves a tuple
(S,A, P,R, γ) called the transition or segment. The state
space S denotes the set of states and the action space A
denotes the set of actions. The transition probability function
P represents the probability : p(St+1 = s′|St = s, at =
a). The reward function R denotes the immediate reward
obtained after a transition from s to s′. And γ is discount
factor.

The representation of the state is designed to describe the
status of the machine and products. The state st ∈ S is
constructed by concatenating the machine setup status and
net demand quantity at t.

• Machine status (sm): The current setup status is the
main consideration in choosing the next action because
the setup cost is a crucial factor. The status is encoded

user
텍스트박스
Proceedings of the 2022 International Symposium on Semiconductor Manufacturing Intelligence (ISMI2022)

user
텍스트박스
2



through one-hot encoding and represented by a N -
dimensional vector. If the jth value of the vector takes
a value of 1, the machine is currently producing the jth
product.

• Net demand timetable (spj ): A timetable expresses the
demand quantity of the jth product excluding the in-
ventory.

• Product inventory (si) : The quantity of inventory for
each item.

• Total demand (sq) : The total quantity of required
demand for each item. The decision maker must cover
the required demand to avoid backorders.

Action at ∈ A is the selection of the next product to
produce at time t. The machine must select a product, and
the action set does not include there being no operation.
An action is executed between all adjacent decision epochs.
If the same action as sm is selected, the setup is carried
over. If action different from sm is selected, the setup
is changed; Selecting action in an MDP and determining
decision variables value in the MIP model is equivalent.

The transition is deterministic. If the machine selects an
action, it executes that action; this relates to the assumption
that no machine failures occur.

During the transition from t to t+1 by selecting the action
at in the state st, we consider the immediate reward rt in
period t. It is consist of the number of backorders of product
j in time period t, the number of setup changes in time period
t and the number of inventory in time period t.

rt(st, at) = sc ·
N∑
j=1

yjt + bo ·
N∑
j=1

I−jt + h ·
N∑
j=1

I+jt (10)

The sum of the immediate reward for every decision epoch
is equivalent to the objective function of the MIP model.

The discount factor γ must be 1 to prevent the distortion.
We define the DLSP as an episodic task.

III. SOLUTION APPROACH
In this section we propose scheduling method based on

RL in detail.

A. Deep Q-Network
We use Deep-Q-Network(DQN) to select the next action

between decision epoch. In this section we describe detailed
method based on MDP formulation. The basic idea for the
DQN is proposed in [11]. Hessel et al.[12] proposed several
extensions to the DQN. The multi-step learning is a method
to avoid a myopic view. It often leads DQN to faster learning.
The immediate reward of n-step learning is :

r
(n)
t =

n−1∑
k=0

γkrt+k (11)

TD-error of n-step DQN is :

r
(n)
t + γnminat+n

Q(st+n, at+n)−Q(st, at) (12)

Q is a state action value function. An experience replay
buffer(ERB) improves data efficiency and breaks correla-
tion between successive states. Each experience transition

includes r
(n)
t in an ERB. Variance of r(n)t is high depending

on action in the DLSP. In other words, we can not get the
same r

(n)
t though we select the same action in the same

state because of variance of the immediate reward. The
environment becomes non-stationary from the perspective
of agents. It causes TD-target to become unstable. We use
single step learning as a result of non-stationary problem. To
overcome a myopic view of single step and get an accurate
selection, we adopt a limited-lookahead method.

B. Structure of Deep Network

The dimension of state about the net demand time
table(spj ) can be increased exponentially as the number of
products is increased. If time period is 1 hour and planning
horizon is 24 hour, 24 dimension increase per product. High
dimension can cause difficulty in the learning. We can reduce
the dimension of the state with encoder. The encoder for each
product state has same parameters because the net demand
time table of each product is homogeneous. The encoder
reduces the dimensionality of each product state to 4. After
encoding for each net demand time table, every components
of state is concatenated.

sp = ∥Nj=1fξ(s
p
j ) (13)

Q(s, a) = fθ(s
m∥si∥sq∥sp) (14)

where ξ and θ are parameters of the encoder fξ and Q-
network fθ, respectively. Fig. 1 shows overall structure of
DQN.

C. Ensemble

For the stability and fast training, we have used Convlution
Neural Network(CNN) structure in the encoder. The DQN
with CNN structure is more stable than Fully Connect Net-
work(FCN) structure but performance is not good compared
to FCN. To overcome stability issue of FCN, we adopt
ensemble mechanism. θ(i), ξ(i) is the parameters of ith Q-
network and encoder network. After training phase 10 DQNs
are trained, we choose the best parameter in test phase :

arg min
θ(i),ξ(i)

[

T∑
t=0

rt(st, at; θ
(i), ξ(i))] (15)

D. Limited Lookahead Method

Mentioned above, the n-step method may interfere with
convergence owing to an increase in variance. However, the
one-step method may generate a myopic policy that selects
a greedy action. After the training phase, we conduct an
lookahead method to prevent a myopic policy and improve
an accuracy of selection. But a lookahead for every action
is an exhaustive trial in the aspect of computational time.
An effective way to improve an computational efficiency
required by lookahead is to truncate the time horizon and
action space[13]. We adopt 2-step lookahead method and
select only three actions(Āt) for which the Q value is larger
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Fig. 1. Structure of DQN

at the state s in the period t. The computational time can be
reduced because Āt is subset of A.

Q(st, at) = min
at∈Āt

(rt(st, at) + min
at+1∈ ¯At+1

Q(st+1, at+1))

(16)
N-step Q-values is recursively calculated by equation (16).
Q-values is estimated by a pre-trained Q-network. Sim-
ulations with a limited lookahead method are run for a
predefined time. Each action is selected and executed until
n-step epoch is finished in simulation environment.

IV. EXPERIMENTAL RESULTS

A. Data generation

To the best of our knowledge, there are no benchmark data
in the literature about the dynamic lot sizing problem[14].
The episode generator is based on data provided by a tire
factory. These data have the following characteristic:

• Processing time for each product ranges from 110
seconds to 150 seconds.

• Inventory level is proportional to the quantity of demand
per hour(dtj). It ranges from 1 to 3 times of (dtj).

• There are less than 25 types of products that can be
produced in each machine per day. 25 numbers of output
nodes are enough in Q-network.

• The machine to make a schedule produces goods to
meet the demand of the post-processing machine. The
number of post-processing machines ranges from 3 to
5.

• The processing time in the post-processing machine
ranges from 400 seconds to 500 seconds.

• The initial setup is selected randomly between 25 prod-
ucts.

We made 10000 data sets for training and validation accord-
ing to the above characteristics.

Algorithm 1 Training Procedure for the RL scheduler
1: for episode i=1,2,...,Nn do
2: for time period t=0,1,...,T do
3: Observe st
4: if t ≥ 1 then
5: Observe rt−1

6: Store post-transition rt−1 and st
7: (st−1, at−1, rt−1, st)
8: end if
9: Sample a random number p ∈ [0, 1]

10: if p ≤ ϵ then
11: Execute action at according to ϵ-greedy pol-

icy
12: else
13: at = argmina Q(st, a)
14: end if
15: Store pre-transition st and at (st, at, ., .) in ERB
16: Execute action at
17: end for
18: Store rT and sT+1 in transition
19: (sT , aT , rT , st+1)
20: for iteration j=1,2,...,NI do
21: Sample NB transition from Prioritized ERB
22: Compute total L(θ) function
23: Update Q-network parameters θ, θ ← θ +

η∇θL(θ)
24: end for
25: Update target-network parameters θ̂ ← θ for every

NU

26: end for
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B. Training Details

The Q-Network is trained using the Adam optimizer. We
use the rectifier linear unit (RELU) as an activation function
in the hidden layers. The determination of hyperparameters
affects the performance of RL-based scheduling. We ran-
domly search for the optimal values despite the large search
space. We choose the hyperparameters as follows:

TABLE I
HYPERPARAMETERS USED FOR TRAINING THE DQN

Hyperparameter Value
Number of episodes (Nn) 10000

Minibatch size (NB) 128
Number of trainings per episode (NI ) 5

Target Q update frequency (NU ) 10 episodes
Interval of the decision epoch 0.5 hour

Replay buffer size 5000
Discount factor (γ) 1.0

Optimizer Adam
Learning rate (η) 0.0005

Probability of selecting a random action (ϵ) 16 ∗ 10−2

Number of hidden layers in the encoder 2
Number of nodes for each layer in the encoder 256, 64

Number of hidden layers in the Q-Network 2
Number of nodes for each layer in the Q-Network 512, 64

C. Performance evaluation

The computation time of the MIP model is limited to 30
minutes, and the solution is obtained using CPLEX 20.1.0.
The experiments are conducted on a server with an Intel
i5-9600K 3.70-GHz central processing unit and 16 GB of
memory. And we set the setup, backorder, inventory holding
cost to 100, 10, 0.1 respectively.

In order to get the optimality gap between an MIP model
and the proposed model, we generate 4 instances with 24, 32,
40, and 48 planning horizon respectively. Each instance has
30 episodes produced under the aforementioned assumptions.
4 instances can be solved to optimality in the limited time.
The results of scheduling is shown in table II. We evaluate the
scheduling performance by calculating the optimality gap.
The optimality gap is :

δ = (1−
ˆTC

TC∗
) ∗ 100(%) (17)

where ˆTC is the cost of RL and TC∗ is the optimal solution
of the MIP model. The average of the optimality gap is 2.4%.

In the real world, we set the planning horizon to 84
periods or longer than it to generate the schedule of 48
planning horizon. We abandon the residual schedule from
the back to prevent distortion at the back end of scheduling.

TABLE II
COMPUTATIONAL RESULT FOR SHORT TERM PLANNING HORIZON

Planning Horizon 24 32 40 48

CPLEX Avg. Total Cost 1474 1896 2287 2416
Computational Time(sec) 3.85 20.52 147 923

RL Avg. Total Cost 1498 1945 2352 2483
Computational Time(sec) 4 5 7 9

TABLE III
COMPUTATIONAL RESULT FOR LONG TERM PLANNING HORIZON

Planning Horizon 84 96 108 120
Avg. Total Cost 4287 4920 5442 6055CPLEX Computational Time(sec) 1800 1800 1800 1800
Avg. Total Cost 4374 4972 5560 6155RL Computational Time(sec) 16 18 20 22

As shown in II, the computational time of the MIP model
is dependent on the planning horizon. The MIP model could
not quickly generate a high-quality schedule in the long-
term planning horizon. To valid the proposed model in the
long-term planning horizon, we generate 4 instances with
84, 96, 108, and 120 planning horizon respectively. Each
instance has the same characteristic aforementioned. The
results of scheduling is shown in table III. We also evaluate
the scheduling performance by calculating the relative gap
(17). We call (17) the relative gap because the MIP model
can not find the optimal solution within within 30 minutes.
The average of the relative gap is 1.7%. The proposed model
finds a high-quality solution within 20 seconds while the
MIP model takes 30 minutes to get a solution. The proposed
model can be an alternative to the MIP model in dynamic
environment where a schedule of many machines has to be
revised frequently.

V. CONCLUSION

Although many studies have investigated the DLSP, none
have addressed a dynamic environment owing to its high
computational time and low accuracy. In this work, we
present an RL-based practical scheduling method that can
be applied in the real world. We design the DLSP of a
single machine as an MDP. We then propose the structure of
the DQN where transition occurs according to the proposed
MDP. We use an ensemble mechanism to generate a stable
schedule. After the DQN is trained, we conduct a limited
lookahead method to prevent an agent from selecting a
myopic action. The proposed method generates a high-
quality schedule comparing to the MIP model taken from
the literature in evaluating instances generated by making
assumptions. Managers allocate products to different ma-
chines, but it is not guaranteed that the allocation is optimal.
In terms of overall system efficiency, allocation can be
more important than single-machine scheduling. Although
the proposed method works well for the single-machine
DLSP, the DLSP in parallel machines requires a different
approach. Future work will therefore focus on the parallel-
machine DLSP using a multi-agent reinforcement learning
framework.
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